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Abstract

Recently, a more challenging state tracking task, Audio-
Video Scene-Aware Dialogue (AVSD), is catching an in-
creasing amount of attention among researchers. Different
from purely text-based dialogue state tracking, the dialogue
in AVSD contains a sequence of question-answer pairs about
a video and the final answer to the given question requires ad-
ditional understanding of the video. This paper interprets the
AVSD task from an open-domain Question Answering (QA)
point of view and proposes a multimodal open-domain QA
system to deal with the problem. The proposed QA system
uses common encoder-decoder framework with multimodal
fusion and attention. Teacher forcing is applied to train a nat-
ural language generator. We also propose a new data augmen-
tation approach specifically under QA assumption. Our ex-
periments show that our model and techniques bring signif-
icant improvements over the baseline model on the DSTC7-
AVSD dataset and demonstrate the potentials of our data aug-
mentation techniques.

Introduction
Given a conversation flow, question-answering dialog sys-
tems are an ideal mechanism for investigating the nuances
of dialog state-tracking. This is based on the hypothesis that
the natural language response to any question depends on the
point in time in the conversation that the question is asked.
A simple example of this is if one asks, “is there a cat in
the video?”. One may ask a natural follow-up question such
as “what color is it?”, where the subject of the question is
a pronoun, but the true meaning of which is stored in the
dialog around the question instead of directly within it. The
logical response to this may depend on such information.
However, without considering the previous question(s), it is
difficult for a generative model to produce information about
the subject as there is little to no relevant context from which
to deduce this. Even if there is information about “color” in
the video modality, the word “it” is still ambiguous without
understanding the current state of the dialog. To capture such
a relationship as it pertains to natural language generation,
we investigate dialog history encoding techniques in order
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to fuse text with the other modalities. We believe that by
successfully answering questions in the Audio Visual Scene-
aware Dialog track of DSTC8, it will provide evidence that
dialog context in QA setting does in fact store information
pertinent to the current stage of a conversation.

Furthermore, we introduce a new data augmentation tech-
nique for dialog state-tracking problems. We believe that for
QA problems, the presence of information in a dialog mat-
ters more than its temporal location. For each question in
the dialog, we encode the QA pairs in the dialog history up
until the point of the question we aim to answer. Leveraging
this claim, we shuffle the dialog histories effectively increas-
ing the size of our dataset. Additionally, we find that teacher
forcing during the training procedure is important for mod-
eling natural language sentence generation. Unlike our ar-
gument with dialog state tracking, we believe that there is
a time dependency present within a sentence. During gen-
eration, the current word or token being predicted depends
on the word(s) generated previously and the respective or-
der. It should be noted that in the case of the first word, we
use the special start-of-sentence token as the default first de-
pendency. To capture this relationship during training, each
token prediction must be treated as its own event; thus, the
model should assume that the previously generated words
are correct.

Background
Dialog State Tracking aims to model natural language by
leveraging the argument that conversational patterns main-
tain information. Thus, there should be contextual infor-
mation hidden in the dialog around the current conversa-
tion point. One of the key domains of interest for this pro-
posal is that of Dialog Question Answering systems. In com-
mon conversations, questions asked later than the first utter-
ance likely pertain to earlier utterances in some way, such
as follow-up questions. Realistically, these relationships are
not always clear and it is challenging to evaluate if there
is indeed a dependency from utterance to utterance. Al-
ternatively, one must consider the possibility that, in these
types of conversations, utterances may be singleton disjoint
events. This argument is important for extending encoder-
decoder architectures to dialog systems. Originally used for



natural language translation, these models rely on the forma-
tion of a context vector from sentence components, where a
time dependency most likely exists (Cho et al. 2014). Intu-
itively, if one is to extend this theory to the macro-level of
full conversation, it is natural to assume that a similar rela-
tionship must exist. Question Answering systems provide a
measurable way to evaluate these dialog state tracking hy-
potheses.

The Audio Visual Scene-Aware Dialog track of the Dialog
Systems Technology Challenge 8 (AVSD, DSTC8) exists to
encourage further research into the complex domain of nat-
ural language generation from multimodal data. DSTC8 and
the AVSD track are an extension of DSTC7. This investiga-
tion is based on data from DSTC7. The provided modalities
in the challenge dataset include visual data in the form of
processed video frames, the audio data extracted from those
videos, and three text modalities consisting of a summary,
caption, and dialog history. The dialog history is comprised
of ten question-answer pairs per example. The challenge
participant is free to use any or all of the modalities, but
is encouraged to attempt synthesis with the text and video-
derived inputs. Ideally, the challenge aims to fuse compu-
tational linguistics, computer vision, and signal processing
to generate meaningful natural language. The development
of this technology is important for the emerging fields of
human-agent interaction beyond just the scope of language
to language interactions. One may envision an agent which
aids a user through interactions with visual data. The user
should be able to freely inquire about that information while
expecting a reasonably confident response. This work as a
whole largely extends the encoder-decoder model used for
natural language translation tasks (Cho et al. 2014). How-
ever, instead of just deriving a context vector from language
alone, AVSD encourages using context from a much larger
scope, which presents the unique challenge of multimodal
fusion.

Related Work
Dialog State Tracking, as a research domain, is broadly de-
fined as the deduction of evidence from linguistic informa-
tion over the course of a conversation to complete a task
(Williams et al. 2013). Within the context of AVSD, the state
of the dialog is part of the internal representation of the data
from which sentence generation is based upon. Essentially
the goal of state tracking is the maintenance a belief state
(Mrkšić et al. 2016). These belief states act as a probabil-
ity space from which a natural language generator, in our
case a decoder, derives its context. Related topics include,
but are not limited to, image captioning (You et al. 2016)
and, to an extent, the visual-question answer challenge (An-
tol et al. 2015). Both of these topics cover the fusion of Com-
puter Vision with Natural Language Understanding to gen-
erate new information. Key distinctions between VQA and
AVSD is that VQA does not incorporate a dialog flow nec-
essary for state-tracking and does not require the generation
of language. A unique aspect of AVSD that is important to
emphasize is that it is an open-domain QA setting and is not
restricted to goal-specific tasks.

Other works that were extremely influential in the devel-
opment of this model are the developments of the Gated-
Recurrent Unit (GRU) and attention mechanisms (Bah-
danau, Cho, and Bengio 2014). Bahdanau, Cho, and Bengio
demonstrate the effectiveness of Recurrent Neural Networks
with fewer parameters and how to address the issue of cap-
turing meaningful temporal information within a sequence
of natural language tokens. Sanabria, Palaskar and Metze
(Sanabria, Palaskar, and Metze 2019), extended this tech-
nology to the previous iteration of the AVSD challenge to
encode text modalities. The use of GRUs is shown to effec-
tively address the issues pertaining to the larger size of tradi-
tional LSTM encoders, which can become very costly when
used within multimodal models. Furthermore, they use the
idea of attention to calculate the importance of a data frame
on the overall goal of the encoding. By extending this idea
to multimodal data, one can tie together diverse modalities
via a common attention source. In theory, this should reduce
the complexity of learning from just raw modality fusion.

Proposed Approach
In general, our model follows an encoder-decoder frame-
work (Fig.1) which can be commonly seen in language gen-
eration tasks (Wen et al. 2015; Wu et al. 2016). In encod-
ing, bidirectional Gated Recurrent Units (BiGRU) are used
for visual, audible and textual sequence embedding of which
are further masked by question-guided attention. Early mul-
timodal fusion, among different modalities, is performed to
form the context representation for the decoder. The decoder
takes in the context and question information in order to gen-
erate a response to the given question using a GRU. In ad-
dition, a scheduled sampling strategy (Bengio et al. 2015) is
applied within the training phase in an effort to increase the
efficiency of the training and robustness of the inference.

Feature Encoding With Soft Attention

Originally, in AVSD, a total of 7 different features are pro-
vided for each sample, including optical flow of video,
RGB frames of video, audio, captioning, annotator gener-
ated summary, dialogue history and the question (Alamri et
al. 2018). Empirically, the best result is usually achieved by
an optimal combination of features. In our work, the caption
is not used because much of the information in this modality
is duplicative of information found within other text modal-
ities, such as the summary.

For textual inputs including question, summary and in-
dividual sentences in dialogue history, we choose a pre-
trained fastText model (Mikolov et al. 2018) for word em-
bedding. We find the fact that there are a fair number of
typos including missing and reversed letters within individ-
ual words caused by annotators during data collection. The
typos would generate out-of-vocabulary (OOV) words and
mislead the essential meaning of the sentence. The fastText
embedding features a character-level encoding and is there-
fore considered a more suitable language model for AVSD
in terms of minimizing the negative effect of OOV words in
language modelling. In our work, we take the advantage of



Figure 1: Model Architecture. The number and notation in the brackets, e.g. (None, Ls, ST ), describe the feature dimension.⊕
means simple concatenation among different modalities. yi represents the i-th word in the ground truth.

an existing library 1 based on (Patel et al. 2018) due to its
OOV handling. It would find the closest known word vector
to replace an OOV word and to the best extent, restore the
sentence-level representation.

For question embedding, we input the sequence of word
vectors into a BiGRU, apply a 2-layer convolutional self-
attention mask to the outputs of BiGRU and then take the
average of the attended BiGRU outputs to obtain the final
question representation. Let q = [q1, q2, . . . , qn] ∈ Rn×dw

denote a sequence of question word vectors with a length of
n; where qi ∈ R1×dw is the i-th word vector with a dimen-
sion of dw:

q̃ = BiGRU(q) (1)
mq = ReLU(Conv2D(ReLU(Conv2D(q̃))) (2)

Q = ReLU(mean(q̃�mq)) (3)

where q̃ ∈ Rn×D are the outputs of all BiGRU cells;
mq ∈ Rn×D is the attention weight; Q ∈ R1×D is the
final question sentence representation; D is the dimension
of the output of each BiGRU cell; Conv2D represents a 2-
dimensional convolution layer with a size of 1 × 1 and �
indicates element-wise product.

For summary sentence embedding, we would like it to fo-
cus more on question-related words; therefore, we choose
to use question-guided general attention (Luong, Pham, and
Manning 2015) rather than self-attention. Then, instead of
using the output of the last BiGRU cell, we do max pool-
ing over the outputs of all BiGRU cells to form their final
representations out of our belief that the embedding from
max pooling includes the dominant signals across all di-
mensions. Let s = [s1, s2, . . . , sn] ∈ Rn×dw denote a se-
quence of summary word vectors with a length of n; where
si ∈ R1×dw is the i-th word vector with the dimension of
dw:

s̃ = BiGRU(s) (4)

ms = softmax(s̃Wsq̃T ) (5)

1https://github.com/plasticityai/magnitude

S = MaxPool(ReLU(
[
mT

s s̃; q̃
]
Wos)) (6)

where s̃ ∈ Rns×D are the outputs of all BiGRU cells;
Ws ∈ RD×D is the trainable weight; attn ∈ Rns×nq is the
question-guided attention with ns as length of summary and
nq as length of question; Wo ∈ R2D×D is another trainable
weight; S ∈ R1×D is the final summary sentence represen-
tation and D is the dimension of the output of each BiGRU
cell.

Similarly, for dialogue history, the same question-guided
attention is applied following Eq.4, Eq.5 and Eq.16. The
only difference is that, instead of using the sequence of word
vectors, we use the sequence of sentence vectors to encode
dialogue history. Each question and answer is treated as a
single sentence and has a single sentence representation vec-
tor regardless of the actual number of sentences it contains.
If no dialogue history is available for a specific question, a
zero vector would be used as the representation whose ele-
ments are all zeros:{

d = [q1; a1; . . . qn−1; an−1], n > 1

d = 0, n = 1
(7)

d̃ = BiGRU(d) (8)

md = softmax(d̃Wdq̃T ) (9){
D = MaxPool(ReLU(

[
mT

d d̃; q̃
]
Wo)), n > 1

D = 0, n = 1
(10)

where d is equivalent to s in Eq.4; qi, ai are the question and
answer sentence vector in dialogue history; n means the n-
th question-answer pair in the dialogue history starting from
1; 0 is a vector whose elements are zeros; d̃ = BiGRU(d);
attn = softmax(d̃Wdq̃T ).

For video and audio modalities, we do not train our own
video feature extractor but directly use the features provided
by the AVSD dataset, namely i3d-flow, i3d-rgb and VG-
Gish. i3d-flow and i3d-rgb are generated by the state-of-the-
art video feature extractor (Carreira and Zisserman 2017)
and VGGish by the state-of-the-art audio feature extractor



(Hershey et al. 2017). Since they are all frame-wise and of
variable length, we use another BiGRU to capture the tem-
poral dependency on top of individual modality. Following
the same processing procedure as shown in Eq.4, Eq.5 and
Eq.16, we define:

o = [o1; o2; . . . ol] (11)

r = [r1; r2; . . . rm] (12)
a = [a1; a2; . . . an] (13)

where o, r, a are equivalent to s in Eq.4 and their correspond-
ing outputs are denoted as õ, r̃, ã; oi, ri, ai denote individual
frame representation for i3d-flow, i3d-rgb and audio respec-
tively. The final i3d-flow, i3d-rgb and audio representation,
are denoted as O,R,A, s.t:

O = MaxPool(ReLU(
[
mT

o õ; q̃
]
Woo)) (14)

R = MaxPool(ReLU(
[
mT

r r̃; q̃
]
Wor)) (15)

A = MaxPool(ReLU(
[
mT

a ã; q̃
]
Woa)) (16)

where Woo, Wor, Woa are the trainable weights; mT
o , mT

r ,
mT

a are the question-guided attention masks for i3d-flow,
i3d-rgb and audio modalities, following the same strategy
as in Eq.5

multimodal Fusion
The context vector contains information from different
modalities and will be used for natural answer generation.
We form it by simple concatenation in order to achieve early
fusion across multimodalities, i.e.

C = [O; R; A; S; D] (17)

Decoder
Because our system is open-domain and supposed to gen-
erate answers of free-form, any extraction-based language
generation approach (Wang and Jiang 2016) would be out of
our consideration. In our work, we adopt a two-layer BiGRU
as the natural language generator. One good point of a RNN
is that it can take in variable-length input and also gener-
ate variable-length output. More importantly, RNN is known
for its ability of modelling long-term spatial or temporal de-
pendency within a sequence so that the language generated
could be more fluent and readable. A two-RNN-layer at the
output is a commonly-used setting in related areas such as a
language generation system and image captioning. In addi-
tion, it is said to be beneficial in decreasing the opportunity
of repeated words within generated language; which, is one
of the difficulties in the natural language generation task.

Given the input question, context and the preceding
words, the language generator models the probability of
each next word. We would like the GRU network to be able
to reason over the context and predict the next work based
on the question and the preceding part of the answer.

P (ω1, . . . , ωn) = Πn
i=1P (ωi|ω0∼i−1; C; Q; ) (18)

In our work, we initialize the GRU hidden state with the
question vector Q and take the concatenation of the context
C and the 1-gram preceding word as the input to GRU cell.

We believe that the context contains more information than
the question and do not want the context to forget any infor-
mation along the progressive prediction procedure.

zt = σ(Wz[C; wt−1] + Uzht−1) (19)

rt = σ(Wr[C; wt−1] + Urht−1) (20)

ht = σ(W [C; wt−1] + rt � Uht−1) (21)

Eq.19, Eq.20 and Eq.21 show how our GRU cell updates its
hidden state at time t. wt−1 is the word vector at time t− 1
in the prediction; [C; wt−1] represents the input to the GRU
cell; ht and ht−1 are the hidden states at different time; Wz ,
Wr, W , Uz , Ur, U are the trainable weights in GRU cell.

Experiments
Training
In our training phase, we use an Adam optimizer to mini-
mize the cross entropy error between the predicted word and
the ground truth. The F1 score on the validation set is used
to terminate the training procedure. To increase the training
efficiency and accuracy, we use teacher forcing (Williams
and Zipser 1989); it uses the ground truth word to predict the
next word during training. More specifically in Eq.19, Eq.20
and Eq.21, wt−1 = yt−1 rather than ŷt−1 just as shown in
Fig.1.

As a comparison, we also try a scheduled sampling tech-
nique (Bengio et al. 2015) which introduces probability into
teacher forcing. Different from a traditional teacher forcing
technique that always uses the ground truth word, there is
a certain probability in scheduled sampling to use the pre-
dicted word as the input to the GRU cell. (Bengio et al.
2015) claims that scheduled sampling could improve the
generalization and robustness. However, we do not see sig-
nificant improvements in our tests. Therefore, we remain to
use teacher forcing for our experiments.

Data Augmentation
Data augmentation is a widely used technique in deep learn-
ing. Most of the time, it is of great help and can outperform
the baseline significantly for data driven approaches. After
examining the AVSD dataset, we find a way to enlarge the
size of the training set by several orders of magnitude. The
training set of AVSD, provides 10 question-answer pairs for
each video.

• The most basic way of using the training data is to treat
the first 9 pairs as dialogue history and take the last ques-
tion as what needs to be answered.

• A quick improvement would be treating the first n pairs
as dialogue history and take the n+ 1-th question as what
needs to be answered. This could augment the data by 10
times.

• In our work, since AVSD is regarded as a ques-
tion answering problem, we do not necessarily care
about the sequence order of the dialogue history. Each
question-answer pair is being seen as a knowledge
point. With this slight difference, we can shuffle the
first n pairs for the (n + 1)th question; ideally it



should not be a problem for a human to answer the
(n + 1)th question. In other words, the dialogue history
[q1; a1; q2; a2; q3; a3; q4; a4] can be seen as no obvious
difference from [q1; a1; q4; a4; q3; a3; q2; a2], or any other
order to the (n+ 1)th question. Theoretically, for a train-
ing sample whose dialogue history length is 9, we can
generate P 9

9 − 1 = 362879 similar samples out of it, fol-
lowing the shuffle idea. Thus, the approach could enlarge
the training set by tens of thousands times on average.

In our work, we take the quick improvement version as
the baseline; assuming that most of the people would adopt
such technique, and take shuffle version as our new data
augmentation approach. In our experiments, we only dou-
ble the training set considering the training time.

Results
Evaluation Metrics We use 7 metrics for evaluating our
model which are widely used when evaluating image and
video captioning, as well as language generation: BLEU(1-
4) (Papineni et al. 2002), METEOR (Denkowski and Lavie
2014), ROUGE-L (Lin 2004), and CIDEr (Vedantam, Zit-
nick, and Parikh 2014).

Model Performance In order to further evaluate our
model’s performance, we compare our results with the base-
line model; as well as other participants in the DSTC7 chal-
lenge on the track of AVSD under two different settings –
with and without video related modalities (i3d-flow, i3d-rgb
and audio). Our best model fully utilizes the combination
of teacher forcing, max pooling, BiGRU and data augmen-
tation techniques. Table.1 shows that our best model out-
performs the baseline model significantly and our scores
are comparatively better than the majority of other models,
demonstrating that our model successfully captures salient
signals among multimodalities. But comparing to (Nguyen
et al. 2018) under the Text-Only setting, whose architecture
is specifically designed to encode the conversation flow, we
see a big decrease in all scores. We hypothesize that as we re-
gard the dialogue history as a group of discrete QA pairs, we
miss certain inner temporal dependencies, impacting tasks
like coreference resolution. While our data demonstrates
that the ordering of the dialog history as a whole may not
contribute as much information as previously assumed, it is
important to consider that phenomena like coreference res-
olution most likely does depend on temporal location. Fig.
2 shows an example of the importance of deducing mean-
ings of ambiguous terms within a dialog history. Another
example is in the case of an ambiguous pronoun. Both sit-
uations usually rely on the presence of a previous noun or
a certain portion in an image or video. After such informa-
tion has been deduced, our data suggests that the order of
that processed information would likely have little effect on
the performance of the system. However, without doing this
before shuffling, information that can be obtained through
techniques such as coreferencing may be untapped.

When comparing our model under different settings, we
notice a significant empirical improvement in every metric
when shifting from Video-Text to just Text-Only. This is
counter-intuitive because the scores should decrease as the

Q1: Is there a guy or a girl in the video?
A1: A man with beard.
Q2: Is that man alone?
A2:

Figure 2: An example of dialog history with a coreference
resolution issue from the AVSD dev set. If Q2 was the given
question, in order to offer a correct answer, a human would
need to figure out whom “that man” exactly referred to.

context should be less-complete without the video and au-
dible inputs. On the contrary, the two other models shown
evaluating on text-only do see a slight decrease in their
scores when compared to the same models that make use
of the video-derived modalities. The difference could be the
result of our model not capturing the real attention of the
video-related signals within relevance to the current ques-
tions at the hidden layer of the BiGRU (Nguyen et al. 2018).
Without the proper video encoding, the video embeddings
could be simply adding noise to our model. Fig. 3 pro-
vides an example of such an error. This provides an inter-
esting insight: the video encoder seems to struggle at cap-
turing temporal actions, limiting the amount of useful infor-
mation present in the encoding. Since this encoding cannot
add meaningful information to the context in respect to the
current question, it functionally becomes noisy data. Given
such findings, the development of more robust video-audio
encoding techniques would be a logical next step in this re-
search. The success of the text-only model in this context
can likely be explained by the model being able to capture
relationships between keywords in the input modalities and
the words that appear in the ground truths. In 4 example (a),
the model is still able to produce a relevant answer, albeit
an empirically incorrect one, regarding audio in the video
without actually being able to access that modality. It is safe
to conclude here that our model successfully captures tex-
tual context, however will struggle in producing the most
robust responses when critical information is exclusive to
other modalities.

Fig. 4 provides examples for the importance of utilizing
a combination of an image encoder, audio encoder and text
understanding. Leaving any of these out could result in inad-
equate answers compared to the ground truths. For instance,
example (a) shows the importance of an audio encoder. The
question can only be answered correctly with the informa-
tion from the audio, but the vocal attention is overshadowed
by other modalities. Example (b) illustrates the importance
of using image encoding with text understanding because
they work together to find that the cloth is black (or dark).

Ablation Study We conduct our ablation study under the
Video-Text setting. As shown in Table.2, the techniques of
teacher forcing, maximum pooling, average pooling, sched-
uled sampling, data augmentation and RNN variations has
been testified. We find that the best overall scores are from
the model that uses teacher forcing, maximum pooling, data



Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr
V

id
eo

+
Te

xt
(Nguyen et al. 2018) 0.695 0.553 0.444 0.36 0.249 0.544 0.997

(Le et al. 2019) 0.631 0.491 0.390 0.315 0.239 0.509 0.848
Our Model 0.586 0.436 0.333 0.262 0.206 0.46 0.704

(Pasunuru and Bansal 2019) N/A N/A N/A 0.118 0.150 0.378 1.158
(Lin et al. 2019) 0.333 0.196 0.131 0.093 0.129 0.334 0.88

(Zhuang, Wang, and Shinozaki 2019) 0.29 0.184 0.125 0.089 0.121 0.298 0.8
(Yeh et al. 2019) 0.237 0.161 0.116 0.088 0.121 0.31 1.015

Basline (Hori et al. 2019) 0.256 0.161 0.109 0.078 0.113 0.277 0.727

Te
xt

O
nl

y (Nguyen et al. 2018) 0.686 0.52 0.416 0.340 0.228 0.518 0.851
(Le et al. 2019) 0.633 0.49 0.386 0.31 0.242 0.515 0.856

Our Model 0.631 0.478 0.37 0.291 0.224 0.496 0.789
Basline (Hori et al. 2019) 0.245 0.152 0.103 0.073 0.109 0.271 0.705

Table 1: Model Performance. Models are ranked by an overall performance rather than any single metrics.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

V
id

eo
+

Te
xt

TF + MaxPool + BiGRU (Baseline) 0.587 0.438 0.334 0.261 0.204 0.451 0.684
+ Data Augmentation (×2) 0.586 0.436 0.333 0.262 0.206 0.46 0.704

BiGRU→ BiLSTM 0.585 0.437 0.335 0.262 0.202 0.45 0.684
TF→ SS 0.588 0.437 0.333 0.259 0.197 0.449 0.655

MaxPool→ AveragePool 0.378 0.25 0.165 0.111 0.152 0.345 0.3414
- TF 0.448 0.231 0.124 0.063 0.12 0.353 0.224

Table 2: Ablation Study. “TF” means “Teacher Forcing”. “SS” means “Scheduled Sampling”. “No-TF” means No Teacher
Forcing or Scheduled Sampling. “×2” means “Data Augmentation by a factor of 2”.

Figure 3: A question whose answer requires the understanding of dynamics in the video. But the Text + Video model provides
an answer describing all static actions, which shows that the captured feature more focuses on the image individually and
doesn’t well represent the dependency among the frames. It could partially explain the performance decrease compared to the
Text Only model.

Figure 4: A is the ground-truth answer to the question Q. (a) is an instance where information from audible inputs is directly
correlated with the proper response. (b) shows the necessity for proper visual-textual reasoning.



augmentation and BiGRUs.
We are interested in the performance difference between

BiLSTM and BiGRU since both are widely used RNN vari-
ants in others’ work. (Weiss, Goldberg, and Yahav 2018)
claims that LSTM with ReLU activation function is strictly
stronger for NLP tasks than GRU because of its unbound
computational ability; however, our results share more or
less identical in terms of the end-goal performance. Given
that our initial model has very low CIDEr score of 0.224,
we experiment by including teacher forcing. This leads to
a notable increase in all our metrics by a range of around
30% ∼ 300%. Time wise, we find in our experiments that
the model with teacher forcing needs fewer epochs to reach
the same performance as without it. Because we find teacher
forcing to be an improvement, we also try scheduled sam-
pling. However, we find that it does not improve our scores
beyond the improvements from strict teacher forcing. Since
scheduled sampling has a certain probability to use the pre-
dicted token instead of a ground-truth token as the last token,
scheduled sampling could work if our baseline model (TF +
MaxPool + GRU) has a fairly high generative accuracy to
begin with as there would be less uncertainty during next-
token prediction. We find that using the prediction is too
noisy and only makes the training procedure less efficient;
as well as not being beneficial to cover a limited number of
outliers in inference. We could try lowering our probabil-
ity of picking the predicted word (0.2), but lowering by too
much could defeat the purpose of using scheduled sampling.

Once we switch from average pooling to maximum pool-
ing, every evaluation metric increases dramatically, most no-
tably the BLEU and CIDEr scores. This verifies our belief
that max pooling includes the dominant signals across all di-
mensions from the outputs of the BiGRU cells. Lastly, with
the inclusion of data augmentation with a factor of 2, our
scores increase even further. Therefore, an enlarged dataset
through shuffling of the n pairs for the (n + 1)th question
does result in a quick score enhancement over the baseline.
Additionally, this supports our theory that the information
within a dialog history matters more than the order it ap-
pears in. Given this performance, we will experiment with
other factors, such as 4 and 5, in order to find the extent of
how much improvement can be made.

Conclusion
In this paper, we evaluate various techniques such as max
pooling, use of BiGRU/BiLSTM encoders, teacher forc-
ing/scheduled sampling, and our proposed data augmenta-
tion technique on question answering from multimodal data.
Our goal was to analyze dialog state tracking through the
perspective of QA within the AVSD track of the DSTC8.
Through this research, we empirically conclude that our ap-
proach performs satisfactorily and improves upon the work
of DSTC7. We find that increasing the dataset by a factor of
2 by shuffling dialog history, combined with teacher forcing,
max pooling, and GRU encoders, produces the best results
within the scope of our tests. Teacher forcing and our pro-
posed technique of shuffling dialog histories result in a sub-
stantial improvement over the baseline model and our own

tests which do not use these methods. This appears to re-
inforce our hypothesis that for QA problems, the order of
dialog histories is less important than the raw information
present within. Additionally, the success derived from the
incorporation of teacher forcing suggests that individual to-
kens within a sentence do have a very important temporal
dependence which is critical for generating accurate natural
language.

In the future, we would like to conduct further investi-
gation into the fusion of visual and textual data. Specifi-
cally, we would like to experiment with approaches pertain-
ing to video-derived modalities, in hope to produce more in-
formative responses with specific details extracted from the
videos.
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