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Abstract. Traditionally, two approaches have been used to build intel-
ligent room applications. Mouse-based control schemes allow developers
to leverage a wealth of existing user-interaction libraries that respond to
clicks and other events. However, systems built in this manner cannot
distinguish among multiple users. To realize the potential of intelligent
rooms to support multi-user interactions, a second approach is often
used, whereby applications are custom-built for this purpose, which is
costly to create and maintain. We introduce a new framework that sup-
ports building multi-user intelligent room applications in a much more
general and portable way, using a combination of existing web technolo-
gies that we have extended to better enable simultaneous interactions
among multiple users, plus speech recognition and voice synthesis tech-
nologies that support multi-modal interactions.

Keywords: Large display interface · Multi-user interface · Cellphone
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1 Introduction

When people engage with one another in meetings, they utilize a mixture of
modalities to communicate and illustrate their points, often times simultane-
ously. To support natural and effective interaction [9,12], artificial assistants
embedded into meeting spaces (or intelligent rooms) must be able to cope with
multiple users across a number of modalities beyond just voice, including gesture
and pointing. There exist a number of mechanisms to harness these additional
modalities, such as leveraging skeleton data from a Kinect camera [18], point-
ing a phone at a display [2,10], or using a wand, remote, or similar pointing
device [8].

Traditional approaches to capturing pointing and gestures for interacting
with these spaces generally fall into one of two classes. One approach is to use
a custom framework/display layer in which all content must be developed for
that framework. This provides well-integrated content for the input modalities,
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but at the cost that it is hard to reuse it outside of the specific framework it
was developed for due to being written in a domain specific language. Addition-
ally, some of these frameworks require building deep hooks into the operating
system, preventing portability. A second approach is to leverage a web-based
platform, and map input events (possibly with some additional processing such
as is required with the Kinect) directly onto the mouse via automation frame-
works, like RobotJS [15]. An advantage of this approach is that the content can
be made available easily elsewhere such as via a web browser. Moreover, there
exists an extensive set of libraries to support building web content and mouse-
based interactions. Unfortunately, as this approach ultimately relies upon the
mouse to trigger events, the systems end up being inherently single-user, thus
leading to an interaction style in which a designated human is primarily respon-
sible for mediating interactions with the system.

This paper describes our work on a framework that overcomes the limita-
tions of prior approaches by allowing developers to build multi-user, multi-modal
intelligent applications built on top of general web technologies, allowing us to
take advantage of the wide-ranging work on websites and web based tools. To
accomplish this, we present our Virtual Mouse Interface that in essence mimics
a physical mouse for each user. Multiple users can simultaneously utilize the
interface to achieve various well-understood mouse actions such as moving their
mouse around a web page, clicking, and scrolling on the displayed web page
within the system. The structure for the rest of the paper is as follows. In the
next section, we bring up and discuss related work. Next, we present an overview
of the architecture of our framework and its underlying technologies. Next, we
describe in detail how the Virtual Mouse Interface functions and how it supports
multi-user interaction. After, we describe some use-cases we have explored with
our interface. Finally, we conclude the paper with a summary of our work and
contributions, and some thoughts about promising lines of future work.

2 Related Work

There is a rich tradition of work centered around so-called intelligent or smart
rooms. These spaces combine a variety of sensors to allow a variety of inputs,
such as voice and gesture. Bolt demonstrated using a combination of voice and
gesture to issue commands to display simple shapes on a large screen [1]. Brooks
demonstrated a distributed architecture that was bound to the underlying X
display server and used to resolve multi-modal commands to the system [3].
Further work showed how these spaces could be utilized by multiple users across
multiple modalities to play chess on a giant screen [4], using a custom built
framework and application. Recent breakthroughs in the underlying technology
have allowed for these systems to be used with less constraints on the inputs of
voice and gesture [6] and to approach more complex domains, such as analyzing
exoplanet data [8], while also relying on displaying and interacting with content
shown in webpages to the user. However, in both of these works, their systems
allow for multiple participants to speak, but the gestural and pointing input
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was driven by a single person holding a “wand”, which tied directly into the
underlying mouse.

While pointing remains a much desired capacity of these types of systems,
it’s important to recognize alternative modalities that have been developed to
enable multi-user systems. Examples of this include a digital table with a touch-
screen [16] or allowing participants to have personal tablets that they can use to
modify globally shown information [13], and through virtual reality and holog-
raphy [11]. The table allows for users to use their hands as containers for objects
for speech commands as well as handwriting content, though the authors note
that it forces a high level of co-locality among the users which ends up nega-
tively impacting their ability to cooperatively achieve tasks simultaneously. The
personal devices help to allow users to type out fuller content to be shared with
the other users without having to rely on the voice transcription service, which
often carries some errors especially over transcribing longer sentences, however,
it’s potentially at the cost of a feeling of decreased connection both to the room
at large and the other participants as each user heavily looks at their own screen.
The virtual reality environment allows for the highest level of immersion within
a space, but is perhaps the most costly to develop and create content for, which
potentially renders in impractical for wide-spread deployment.

3 The Cognitive and Immersive System Architecture

Our system builds upon the Cognitive Immersive Room Architecture CIRA [5],
which supports and augments group decision-making with cognitive artificial
agents in so-called human scale environments. The architecture features a mod-
ular approach of separate components handling specific concerns, such as a
transcript-worker for receiving input from microphones, a conversation-worker
for translating the transcribed speech into dialogue, etc. We extended the archi-
tecture by augmenting the existing display-worker and adding in two new com-
ponents, the spatial-context-system and Reagent, which are described below. As
part of this work, and to demonstrate its effectiveness, we deployed it in two
unique environments, where the first features a panoramic screen with a diame-
ter of 12 m and height of 3.8 m that users stand inside of (shown in Fig. 2), and
the second features a screen that is flat against a wall and measures 11 by 1 m
that users stand in front of (shown in Fig. 5). In both environments, the users
are equipped with lapel microphones that picks up what they say, transcribing it
to text on the fly, which is then converted to an intent and entities utilizing IBM
Watson Cloud services [7]. This intent is then fed into an orchestrator which
matches it to an action within the domain, and sees if all entities necessary for
the action are satisfied. If some are missing, the system will attempt to resolve it
based on information that comes from the gesture system (e.g. what is the user
actively pointed or just recently pointed at) as well as historical context of prior
intents. If this resolution succeeds, the system carries out the command, else if
it fails it asks the user for additional information. In carrying out the command,
the orchestrator can call out to external web services to gather additional infor-
mation, display content on the screen, or use speakers to output a synthesized
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voice to the users. Figure 1 shows an overview of this architecture and how the
pieces are connected. Communication between the core modules of the system
utilize RabbitMQ and a publisher/subscriber model to allow modules to be eas-
ily swapped out or new modules put in with the only potential change is just
the routing key the modules listen to or output on. The core modules of the
architecture that enable our key contributions are highlighted below.

Fig. 1. Architecture of the cognitive and immersive system

3.1 Spatial-Context-System

Within our system, to handle capturing gestural information, users can utilize
Kinect cameras [18] or HTC Vive controllers [17], utilizing a common interface
API1. For both, the underlying implementation follows a similar development
path. First, a unified 3D coordinate system is defined for a model of the space,
giving all fixed physical objects, such as the displays, a unique location in this
model. Next, the sensors, including the Kinect and HTC Vive controller, are
calibrated against this coordinate system so that the data generated from the
sensors is translated into the coordinate system of the space. Using this, we
can create a pointing approximation for the Kinect by using a 3D location of
the joints of the human arm and for the HTC Vive by using the posture of the
controller to estimate a pointing ray. This approximation is then used to calculate
the spatial interaction against the fixed objects, giving us a corresponding [x, y]
pixel against the fixed object which acts as the final pointing result. To support
multiple users, we dynamically maintain IDs for users in the space. For the
Kinect, a unique ID is automatically assigned to a user when they enter the field
of view of the camera. For the HTC Vive, an ID is assigned when the controller
is turned on and connects to the space. This “spatial ID” is then tied to the
unique ID of the lapel microphone for a user to allow for fusion and reference
of speech data with gestural information. For either system, it then passes the

1 It is important to note that through this interface, additional types of input can be
supported beyond the two presented here.
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pointing information, as well as gestures for the Kinect and button presses for
the HTC Vive to the spatial-context-bridge which then acts as a normalization
layer on the inputs to standard mouse interactions. The HTC Vive requires
little normalization as it already has buttons that correspond to how a mouse
functions that we can leverage (left and right buttons, scroll wheel, etc.). The
Kinect camera on the other hand is transformed from the gestural information of
hand actions to mouse actions. For example, opening and closing the right hand
corresponds to clicking and then releasing the left mouse button while closing and
moving the left hand corresponds to using the scroll wheel to move about a page
in the four cardinal directions. Additionally, it provides a smoothing operation
on the quickness of hand state changes such as to prevent a rapid hand close,
open, close chain within a few milliseconds rising from a brief misclassification
of hand state. This is to prevent accidental clicks or ends of clicks that a user
might wish to avoid, at the cost of actions taking a few extra milliseconds.

Fig. 2. Aerial shot of half of the 360-degree panoramic screen

3.2 Display Worker

Displaying output on the screen is managed by the Electron framework, which
uses a modified chromium engine2 to render content from websites contained
within “webviews”. The display-worker provides the user with a grid with a set
number of rows and columns in which the user can open as many websites as
they would like, with each taking up one or more cells. An example of this is

2 The modification here is that all generated JavaScript events have the “isTrusted”
flag set to true, which is usually only set to true for user generated actions. This
allows us to interact with inputs, selects, etc. on a page that do not have an explicitly
created “EventListener”.
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shown in Fig. 3, which shows a 4× 4 grid with 5 web pages of different sizes open.
It is possible that open webviews may overlap each other, or be kept completely
separated, depending on the needs of the application. When each webview opens,
the display-worker preloads a small JavaScript file on-top of the opened webpage
which helps deliver a payload from the Reagent system, described below. From
the spatial context system, it receives the absolute [x,y] coordinate, which it
shows to the user as an icon on the screen with their user id in the center. This
icon then follows where the user is pointing on the screen, and gives a visual
indication of the particular action they are attempting to make (such as clicking
on the screen). To help translate what webview a user is interacting with, the
display-worker provides an API to understand the dimensions of open webviews,
as well as providing a mechanism to translate an absolute [x,y] coordinate on
the overall screen into a relative [x,y] coordinate within a given webview. To
accomplish this, the display-worker maintains a sorted list of webviews based on
their “height” in the DOM tree where elements lower down the tree are on top
and overlap elements higher up in the tree, and traverses through that list until
it finds a webview in which the [x,y] coordinate lies. To speed this process up on
subsequent look-ups, we exploit the principle that users repeat actions within
the same webview usually, so we cache the webview the previous look-up was
in and check it first on subsequent calls, unless a new webview is opened in the
intermediary time. If the new action falls outside the webview, we instantiate
the above search again to find the new webview.

Fig. 3. View of display with 4× 4 grid with 5 open pages. Green lines represent the
grid and blue lines the borders of the web pages. (Color figure online)

3.3 Reagent

The Reagent system [14], once its bootstrap is pre-loaded by the display-worker,
injects further JavaScript code from the Reagent server, which then in-turn con-
structs an open websocket on the webpage to the Reagent system. Additionally,
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while important to the operation of the voice system, but orthogonal to the
Virtual Mouse, the injected JavaScript inserts a transparent layer on top of the
open page. This layer then analyzes the site, captures the salient semantic infor-
mation of the page, build listeners for user interactions with the mouse on that
content, and attach a so-called MutationObserver to detect any changes in the
content of the page, causing the above process to repeat. Additionally, it sets
up a websocket on the open page that is used for bidirectional communication
between the webpage and the central Reagent server. This server then utilizes a
REST API to allow other modules, such as the orchestrator, to get information
about what elements are at a particular [x,y] coordinate, get a record of prior
interactions, or to run arbitrary JavaScript within a page, such as triggering
custom interaction events and which returns the affected elements.

4 Virtual Mouse Interface

Leveraging the spatial-context and Reagent systems, we enable a Virtual Mouse
Interface that allows users to interact with content as well as to guide multi-
modal interactions. This interface gives each user the equivalent of their own
personal mouse. The interface itself, under the hood is not one dedicated com-
ponent, but rather conglomeration of functionality across modules described
above. To start, the spatial-context-system provides us with an absolute [x,y]
coordinate for a given device on the screen from a user, which has a unique ID
attached to it. This is sent into the display-worker, which then displays an icon
to the user on the screen that represents where they are pointing at that time,
as well as the mouse action they are doing. This icon updates at a constant
rate for the user, and scales to many concurrent users, where there is (due to
RabbitMQ) a delay of about 4–8 ms, which is largely imperceptible to users.
In addition to the display-worker, the spatial-context system sends the point-
ing and action data to the orchestrator. The orchestrator communicates with
the display-worker to translate the absolute [x,y] coordinate into a relative [x,y]
coordinate within a specific webview. From here, it communicates with Reagent
in a number of ways. For each payload that it sends along, and the subsequent
action JavaScript event that Reagent generates against a given WebView, the
unique user ID is passed, which Reagent binds to the generated events that are
dispatched to the page. First, it is important to denote that the orchestrator sets
a limiter on the number of actions that can flow through the system, which is
roughly 75 ms per action type, which allows adequate throughput for the system
for a number of users such that they do not notice lag while also not sending too
much information to the page and potentially causing a slow-down. Below, we
describe the two types of actions with which we concern ourselves with, mouse
and scroll.

4.1 Mouse Actions

Mouse actions represent the principle way in which people interact with the page.
This includes the use of the left and right mouse buttons, though we mainly focus
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on the usage of the left button here. The mouseitself can be thought of as being
in three potential states, being held down for any period of time (MouseDown),
being released after being held down for any period of time (MouseUp) and a
rapid push down and release of the button (Click). Additionally, there is the
act of just moving the mouse itself (MouseMove). To start with these actions,
the orchestrator first sends a MouseMove event to Reagent, which then gets
dispatched against the webview. From this, Reagent returns the element that the
mouse is currently over. The orchestrator stores this element and if it different
from the last stored element, issues to Reagent a leave event (MouseOut) on
the old element and an enter (MouseEnter) on the new element. This chain of
events allows for triggering of hover type events on a site for the given elements
affected as you move your cursor across a page. Finally, it takes the mouse action
(MouseUp or MouseDown and possibly Click), and sends that to Reagent to issue
against the page. In all of three of these cases, Reagent sends details about the
element that was clicked on, such that the orchestrator can drive subsequent
interactions on it, such as if clicking on a form input, can ask the user what
value do they want to input, which is picked up via voice input.

4.2 Scroll Actions

For scroll actions, a more involved sequence is followed to determine what type of
scroll is meant by the user. Webpages may implement scroll to mean just moving
around the content that has overflowed from the available displayed space (such
as scrolling down on a news article), which is referred to as a ScrollEvent. Alter-
natively, they may use scroll to control zooming in and out of the content, or
panning (common in graphs or maps), where these are WheelEvents. However,
for both, we require the difference between the current mouse position and the
previous mouse position to perform the action, which is stored within the orches-
trator. To determine the appropriate action (especially on a page that includes
both overflowed content and a graph), the orchestrator first sends a WheelEvent
to Reagent. Reagent returns the event that was acted upon, as well as if the
MutationObserver it attached to the page detected any changes to that page.
If there are no changes, than the system determines that the user’s intention
was not to zoom or pan, but to simply scroll the page for overflowed content, at
which point a ScrollEvent is issued to Reagent, and the page content is shifted.

5 Use Cases

We now describe some use-cases that we have explored with our interface,
and describe implementation details. These use-cases cover a couple of differ-
ent design paradigms that we envision content creators might follow. We first
start with utilizing existing web sites in which it is expected only one particular
user at a time is going. For this, it is important to remember that the display-
worker allows us to open many different webviews at the same time across the
available space. For example, in Fig. 2, there is 6 different open webviews in sight.
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Each webview is self-contained and interactions within one does not bleed into
any other. From this, the virtual mouse interface allows users to interact in dif-
ferent webviews simultaneously. An example of the ways a user might do this is
shown in Fig. 4, where the user on the left is scrolling an article in the center,
while the user on the right is scrolling the window next to it. Other examples of
these sorts of pages include opening something off Google Maps, interacting with
a graph, etc. where only one person can scroll and generally only one location
or node selected at a time.

Fig. 4. Two users interacting with multiple open webviews

The other type of interaction we concern ourselves with is having one open
webview in which multiple users interact simultaneously. For this, the content
creator implements on their site content that has their own event listeners and
that can be interacted with discretely, such as elements that are to be clicked on3.
This can be further extended, if the content developer knows they are designing
for our system, by taking advantage of the provided user id on a given event to
tie subsequent actions to a single user. For example, in the context of a sticky
note application, it may be desired that a MouseDown on a note selects the
note, the mouse is moved, and then a MouseUp releases the note to that new
location. Multiple users can be supported for that by storing the user id to the
note on MouseDown, and ignoring any subsequent actions made against the note
except for a MouseUp by that same user. An example of this is shown in Fig. 5.
Through this extended paradigm, we easily allow existing sites with discrete
mouse actions to function and take advantage of the provided interface.

3 https://codepen.io/masterodin/pen/jOOPddy gives an example of this sort of
content.

https://codepen.io/masterodin/pen/jOOPddy
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Fig. 5. Two users moving sticky notes around a screen

6 Conclusions and Future Work

In this paper, we present a Virtual Mouse Interface, powered through a cognitive
and immersive system, to handle multi-user, multi-modal interactions. Through
this interface, we can leverage existing web content and handle interactions to it
in a way that mimics a physical mouse to those pages. To accomplish this, our
interface leverages the Regent system to issue simulated mouse events through
JavaScript, while attaching a unique ID per user to the event. From this, pages
can be interacted with similarly to a regular mouse, however we can have many
virtual mouses interacting at once, be it on the same webview or different open
webviews. Additionally, pages can utilize the unique user ID to tailor interactions
around our system. This helps remove a major hurdle of requiring a single driver
of the system to handle the gestural interactions or development of full custom
applications that existed within prior work. Future work would aim to principally
lower the latency between events to increase fidelity. Additionally, when using the
Kinect, creation of an interface to allow the user to map the inputs of the hands to
the virtual mouse in a personalized way as well as for allowing additional actions
such as right clicking. Finally, while we focus here on Kinect and HTC Vive as
the principal input mechanisms, we are investigating the usage of cellphones,
which would operate on a similar input scheme as the HTC Vive, but hopefully
be more intuitive to users, as well as lowering entry costs to our system.
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