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Abstract. Most present-day voice-based assistants require that users
utter a wake-up word to signify that they are addressing the assistant.
While this may be acceptable for one-shot requests such as “Turn on
the lights”, it becomes tiresome when one is engaged in an extended
interaction with such an assistant. To support the goal of developing
low-complexity, low-cost alternatives to a wake-up word, we present the
results of two studies in which users engage with an assistant that infers
whether it is being addressed from the user’s head orientation. In the first
experiment, we collected informal user feedback regarding a relatively
simple application of head orientation as a substitute for a wake-up word.
We discuss that feedback and how it influenced the design of a second
prototype assistant designed to correct many of the issues identified in
the first experiment. The most promising insight was that users were
willing to adapt to the interface, leading us to hypothesize that it would
be beneficial to provide visual feedback about the assistant’s belief about
the user’s attentional state. In a second experiment conducted using the
improved assistant, we collected more formal user feedback on likability
and usability and used it to establish that, with high confidence, head
orientation combined with visual feedback is preferable to the traditional
wake-up word approach. We describe the visual feedback mechanisms
and quantify their usefulness in the second experiment.

Keywords: Multimodal interaction ·
User interaction and experience · Natural language interfaces

1 Introduction

Voice-activated assistants typically require users to utter a wake-up word (such
as “Hey Google” or “Alexa”) to indicate that they are addressing the assistant.
Most interactions with these devices consist of one or two commands (Bentley
et al. 2018). The use of a wake-up word is generally acceptable for short atomic
requests such as “Turn on the lights” or “Set a timer for 5 min”, which require no
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deliberation or discussion. However, assistants designed to assist humans with
higher-level cognitive tasks are beginning to emerge, as demonstrated by Kephart
et al. (2018) and Farrell et al. (2016). While by and large these agents still process
one-shot requests, those requests tend to be issued in rapid succession, and may
often be interleaved with discussions with other humans. Thus, from the users’
perspective, communication with the agent is part of a broader conversation that
they may be having with another human, making the overall dialogue multi-
round. In this case, prefacing each command or request with a wake-up word is
tedious and unnatural.

For assistants that support multi-round conversations with only one human,
one previously-explored solution has been for the assistant to extend its period
of attentiveness for a few seconds after its most recent response. However, this
is not viable when multiple people are collaborating with one another and with
the agent, as it becomes difficult for the assistant to distinguish requests from
conversation among human collaborators. A confused agent may interrupt such
side conversations with inappropriate and unwelcome chatter, such as “I’m sorry,
Dave. I’m afraid I can’t do that.”

We seek to develop an alternative to the wake-up word that is sufficiently
accurate without being unduly complex or expensive. As a starting point, we
note that an approach that has been explored by the HCI/HRI community for
robotic assistants is based upon real-time eye-gaze measurements (Wang and Ji
2017). A drawback of this approach is that it requires careful calibration, and
moreover distance scales appropriate for multi-user scenarios require expensive
Pan-Tilt-Zoom (PTZ) cameras. Fortunately, we note that other prior work has
established that head orientation can adequately substitute for eye gaze in the
context of gaming (Da Silva et al. 2008) and meeting analysis (Stiefelhagen and
Zhu 2002)—suggesting that it may be acceptable in our scenario as well.

This paper describes our effort to ascertain whether the relatively inexpen-
sive approach of using real-time head pose measurements as a proxy for user
attention is a suitable alternative to using a wake-up word. After a review of
the relevant literature in Sect. 2, Sect. 3 describes a first experiment in which we
implemented a first prototype assistant that used a simple heuristic to determine
whether the user was addressing the assistant. The assistant, which was based
upon a previously-developed astrophysics assistant (Kephart et al. 2018) that
helps users explore data about exoplanets (planets that orbit distant stars), was
represented as an avatar displayed on a large TV screen, as depicted in Fig. 1.
Informal feedback from this study involving several novice users indicated that
the assistant was not sufficiently usable. Results from the pilot study also pro-
vided insights into how the assistant might be improved. Section 4 first describes
how we translated lessons learned from the pilot study into technical enhance-
ments to the prototype. Then, we report results from a controlled user study
that we conducted with 8 university students (none of whom had participated
in the pilot study). These results establish with reasonable confidence that the
second (enhanced) prototype assistant is more usable and likable than a version
of the assistant that is otherwise identical except that it uses a wake-up word.
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We conclude in Sect. 5 with a summary and some thoughts about possible future
extensions of this work.

2 Related Work

Our contribution is multi-disciplinary and hence the related work is discussed
in three parts: addressee detection, HCI of Multi-modal Conversational UI and
gaze detection.

2.1 Addressee Detection

Most prior work on addressee detection and turn-taking focus on using combi-
nations of visual, acoustical and textual features from human participants in the
interaction. Efforts have been strong towards fusing these multiple modalities,
identifying importance of each modality and applying machine/deep learning
algorithms at different stages e.g. modality fusion, attention detection, etc. as
described further.

Ravuri and Stolcke (2015) have explored addressee detection but strictly with
lexical and/or speech based modality. More recently, Norouzian et al. (2019) have
explored sophisticated models for addressee detection based purely on acousti-
cal cues. Frampton et al. (2009) have combined gaze and linguistic features to
identify the addressee in conversations among groups of humans that involve
ambiguous references like “you”.

Bakx et al. (2003) and Van Turnhout et al. (2005) have contributed to the
addressee recognition problem by collecting data in a Wizard-of-Oz setting in
which human subjects spoke to a human partner and a human-driven kiosk that
posed as an intelligent machine. They conducted statistical analyses to relate
manually annotated eye-gaze data to characteristics of the conversation and
trained and evaluated a Naive Bayes classifier. They found that looking away
from the machine strongly signified that the addressee was the human partner,
but looking at the machine only weakly signified that the human was addressing
the machine.

Baba et al. (2012) and Nakano et al. (2013) have experimented, analyzed
and implemented conversations with the goal of addressee detection in human-
human-agent settings. They find that the tone of voice while talking to agent
is higher and a speech+head orientation signal in their SVM model has given
them good results. The literature thus encourages our thoughts that head ori-
entation is an important signal. Akhtiamov et al. (2017), Shriberg et al. (2013)
have done similar work in addressee detection based on speech and textual fea-
tures. Le Minh et al. (2018) have explored addressee detection using gaze in
data that contained images and text using deep learning approaches. Tsai et
al. (2015) have studied the effect of various multi-modal features in addressee
detection in human-human-computer interaction and have concluded that voice
based features are more important that visual features due to headpose being
affected by situational attractors claiming that headpose, by itself, is not enough.



You Talkin’ to Me? A Practical Attention-Aware Embodied Agent 763

Akhtiamov and Palkov (2018) echo similar findings as their addressee detection
accuracy is highest with acoustical+textual+visual features.

Further, in the HRI field, Katzenmaier (2004) have explored in depth how to
identify the addressee in a human-human-robot conversation. As do we, they find
that users may look at the agent even when they are actually addressing another
human. In their parlance, people usually look at the subject to whom they are
speaking except when there is another “situational attractor”, which they define
as “objects or situations in the environment that attract people’s eye gaze when
they are talking to each other”. Work in this field seemed to be the theme of
research in the HRI community in the early 2000’s. Some examples of which are
Sheikhi and Odobez (2015), Mutlu et al. (2012), Gu and Badler (2006). Their
contributions have determined Visual Focus of Attention (VFOA) using eye-gaze
and/or head pose, identifying the addressee based on combinations of VFOA and
context using several models in an effort to make robots more humanistic.

Attention detection is closely related to turn taking in multi-party conversa-
tions. Andrist et al. (2016) have summarized the turn taking problem in HCI and
further motivated this problem. Kendon (1967) have shed light on the non-verbal
turn-yielding cues in human-human behavior such as body movement or gaze
direction, while Gravano and Hirschberg (2009) have discussed turn-yielding cues
such as speaking rate, intonation, etc. giving the research community heuristics.
Bohus and Horvitz (2011) have used a kiosk scenario with a humanistic face
to study and look more broadly in the turn-taking domain in a game-like con-
text. They used hand-crafted turn-taking policies to enable their prototype and
emphasize how a bad turn-taking system is a conversation breaker.

2.2 Interaction Design

Interaction mechanisms for the purpose of attention detection and turn taking
have previously been explored in the HRI community. van Schendel and Cuijpers
(2015) have demonstrated the positive effect of robots expressing turn-yielding
cues such as stop arms, turn head, flash eyes. We encourage enthusiastic readers
to see Admoni and Scassellati (2017) who have in detail reviewed the state-
of-the-art in social eye-gaze in human-robot behavior and discussed its role in
usability, conversation, attention and turn-taking.

Visual cues have been explored in the chatbot area and are seen deployed in
commercial applications like Alexa Echo, Google Home, etc. They appear as a
combination of colored and patterned flickering of lights to indicate when the
bot is listening, talking, thinking, etc. The importance of visual feedback in this
context has been motivated in a talk by the VP of Alexa and Echo (ZDNet 2018)
and documentation for Alexa’s attentional system (Amazon 2019) can be seen
on their webpages. However, we have not found an academic discussion of the
same.

A common focus appears to emerge from literature - improving accuracy of
attention detection by fusing several conversational and visual cues. However,
building a system to express and interpret all of the cues in real time is a hard
problem in research and in computation. We want to build a system that is not
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too expensive to deploy, sufficiently accurate and easy to use. Hence we start
with just using headpose as an estimation of users’ gaze which activates the agent
and focus on the user experience of the conversation. In doing this we have found
it relatively easy to deploy interaction mechanisms that increase the usability of
a system. We show that such an interaction is still preferred over the currently
established paradigm of using a wake word in non-robotic conversational UI.
We can only imagine that with future advances in computer science, considering
other cues will be cheaper and lead to better accuracy which will even further
increase the usability of our system.

2.3 Gaze Detection

Head pose estimation is one of the most popular topics in Computer Vision area.
There are two major approaches applied to this specific task: the landmark-based
approach and end-to-end approach.

Typically, the landmark-based approach entails three steps: first, find faces
in a RGB image; then detect the facial landmarks as features i.e. contours of
eyes, nose, mouth and face; and finally predict head orientation based on the
landmarks. Researchers are pushing forward the frontiers for each step. For the
first step, Lin and Tsai (2012) and Ranganatha and Gowramma (2017) both
have focused on face detection and face tracking problems. They have use Haar-
like features such as face edges and corners to find all the faces in a frame and
apply different tracking algorithms for the faces in the coming frames to increase
computation efficiency. Lin and Tsai (2012) used Kanade-Lucas-Tomasi (KLT)
tracking algorithm and Ranganatha and Gowramma (2017) have used a combi-
nation of Continuously Adaptive Mean Shift (CAMShift) and Kalman filter. For
the second step, Wu and Ji (2017) have conducted an elaborate survey about
face landmark detection, grouping algorithms into 3 major categories according
to the ways the facial appearance and shape information are utilized and, com-
pared their performances. For the third step, Dementhon and Davis (1995) have
described a method of pose estimation using a base of Orthography and Scaling
Approximation (POS). A POS system finds translation and rotation matrices
by solving a linear system. Dementhon and Davis (1995) loops over this proce-
dure for a better pose estimation with faster computation and implementation
speed and, because of its merits it eventually becomes a part of our approach.
In fact, instead of taking these three steps completely apart, researchers are also
interested in integrating them together to improve efficiency and performance. A
unified framework has been proposed in Wu et al. (2017) with landmark detec-
tion, head pose estimation and facial deformation analysis taken into account
simultaneously. It is shown to perform more robustly in cases where occlusion
becomes a major issue for face detection. It is an intermediate method between
independent methods and end-to-end methods. However, it is not adopted in
our approach, because occlusion isn’t an issue in our scenario and therefore its
complexity doesn’t contribute much to accomplishing our goal.

The success of deep learning and end-to-end model in various tasks and prob-
lems in Computer Vision area are encouraging researchers to utilize it in head
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pose estimation. Ahn et al. (2015) have proposed a deep neural network which
took low-resolution RGB images for head pose estimation. They use regression
in their architecture with the aid of GPUs. The model was able to provide con-
tinuous pose results in real time. De and Kautz (2017) have leveraged the merits
of Recurrent Neural Networks, borrowing the information from preceding frames
and bringing extra bonuses to applications in real-time and in video head pose
estimation. To summarize, the overall advantage of an end-to-end model is that
it does not rely on any explicit face features or independent face feature extrac-
tors, and hence outperforms landmark-based approaches in the cases where facial
features can not be detected due to occlusion.

In addition to the effort of improving the model itself, researchers are exper-
imenting with improvements to the model input for head pose estimation in
specific scenarios. Borghi et al. (2017) and Venturelli et al. (2017) respectively
have created a Generative Adversarial Network and a Convolutional Neural Net-
work to predict head pose from depth images. Again, an end-to-end model was
adopted, but instead of using RGB images, the authors took depth images as the
input of the model. Its main advantage over the RGB-based approaches is that
the depth sensors are not affected by the environmental illumination changes,
and therefore the model can be more adaptive. However, end-to-end model is
computationally intensive in nature and it runs counter to our goal of being
low-cost and low-overhead.

3 Experiment 1

In this section, we begin with a technical description of our first prototype assis-
tant. Then, we report on results and lessons learned from a pilot study of this
assistant involving 10 novice users.

3.1 Technical Details

Figure 1 shows a typical setup in which one or more users sit across from a
large display. The agent (embodied on the screen) uses the display as a canvas
for showing requested information to the users. The existing exoplanets proto-
type already contained ASR and intent recognition capabilities made available
on a pub-sub channel. We added to the existing prototype a head-orientation
application that processed video signals from a webcam to infer the user’s head
orientation, plus capability that combined speech transcription with head ori-
entation to determine whether the agent should assume that an utterance was
directed to it.

Capturing voice and facial image data has implications of privacy. For voice
transcription, we use a commercial module and rely on their privacy guidelines.
Our scenario did not require users to mention any personally identifiable infor-
mation when the microphones were on.

For face data which is much more sensitive, we used a designated machine
to process it. None of this data was uploaded on to the internet. The machine
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received image data from the camera attached to it, computed the headpose
coordinates and only sent these coordinates to the rest of the system.

To build a low-cost, low-overhead head pose estimation system for real-time
inference which, at the same time, can be adopted elsewhere easily with the
smallest limitation, we decided to follow the landmark-based approach described
in literature review. This is because end-to-end approaches are computationally
expensive and need one or several powerful GPUs for real-time performance.
Considering our indoor environment, the landmark-based approaches are already
good enough to handle the cases of our interest. Enthusiastic readers are encour-
aged to see Zhao et al. (2018) where more details of this technique are elucidated.
These calculations are performed at approximately 20 Hz and published on a
head-orientation pub-sub channel.

An attention inference module subscribes to the speech transcription and
head-orientation channels. It checks each head-orientation event to determine
whether or not the head orientation falls within a defined Region of Interest
(ROI) e.g. TV Screen in Fig. 1. If the current state is non-attentive and the head
orientation falls within the ROI, a new attention window is started, which ends
as soon as the head orientation falls outside the ROI or the user’s face is no longer
detected. The ROI can be configured as needed. Given the relatively low precision
of headpose system which was traded-off for deploy-ability and preference to use
markerless non-intrusive technologies, we selected the entire screen as the ROI.
Results in further section will show that this worked. Similarly, a transcription
window is started when speech is received and ends on detection of a pause. For
each utterance, the overlap between the transcription and attention windows
is computed and thresholded to determine whether or not the utterance was
addressed to the assistant. If the transcription contains the attention word (e.g.
Watson/Celia), it is assumed to be intended for the assistant regardless of head
orientation.

3.2 Pilot Study

We conducted a pilot study designed to get periodic early feedback on our sys-
tem’s usability and the nature of any shortcomings it might exhibit. The feedback
was based upon direct observation of user interactions with the system captured
on video, as well as user responses to written survey questions and informal
interviews conducted immediately following the each user’s interaction with the
system.

Demographic. A total of 10 people were recruited to interact with the sys-
tem. All of our subjects had some background in technology which ranged from
undergraduate/graduate university students to experienced research scientists.
They all were aware of commercial conversational agents (e.g. Siri, Alexa, etc.)
although some used them more infrequently than the others. The population
contained native and non-native English speakers. 4 subjects who work in the
same lab but had never seen this project before were also recruited as they
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(a) Environment 1 (b) Environment 2

Fig. 1. Assistant and its environment

represent the demographic that is most acquainted with such type of a conver-
sational agent and would give a critical assessment of the system. This group
positively expressed that they would find such an attention awareness module
in their demos/projects useful.

Study Details. Each subject was paired up with a partner who engaged the
subject in a discussion with the AI assistant about exoplanets. Our aim in picking
a specialized topic like exoplanets for conversation was so that previous expe-
rience and familiarity with the content of the conversation would not severely
bias the findings. Due to inexperience with the domain, an instruction sheet
encouraged the subjects to explore exoplanets and detailed the commands that
the AI assistant would recognize. The task for the AI agent was to separate out
the side conversation from commands given to it. The subjects mostly drove the
system, except in rare circumstances. We used a combination of setups shown
in Figs. 1a and b to conduct pilot testing. Both setups had the participants sit-
uated in a conference-room style seating. They both sat in chairs that faced the
screen (agent space). A major difference between the two setups was location of
the camera that helps determine headpose. Figure 1a used the built-in camera
on a laptop to track the head orientation. This was a more fluid design and
likely to be more typical of real-life meetings in which the head orientation of
participants could be tracked using their own personal laptops. However, in this
setup, calibration had to be done very carefully and slight changes in the laptop
position would not work well. In our case, calibration would mean position of the
camera, what pixels (as inferred by the headpose system) constituted as within
the Region of Interest (ROI), what constituted as agent space, etc. Addition-
ally, since the range of the camera vision is limited, subjects who were taller or
shorter than the subjects for which this setup was calibrated had a tough time
interacting with the system. In contrast, Fig. 1b has a web camera mounted on
the display. This setup responded more reliably to variations in the physical
aspects of the subjects given the field of vision of the camera.

The users were encouraged to think out loud. Their feedback was taken
through a questionnaire and an informal interview. Since there existed variations
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in each iteration of the study, we used this study to find anecdotal patterns in
any difficulties that arose in the course of the interaction. A sample hypothetical
interaction can be seen in Table 1. Italicized parts are utterances that the system
recognizes as commands and responds to. Determining whether to respond to
them or not in these cases is the challenge for the system here.

Table 1. Sample interaction (H1 = Human1, H2 = Human2, AI: AI agent)

Turn Utterance

H1 to H2 Let’s start visualizing exoplanets by just plotting them?

H1 to AI Show me a plot of exoplanets

AI Okay (display of plot)

H2 to H1 That plot doesn’t tell me much. I wonder if the temperature of stars start to
lower as they die down

H1 to H2 Perhaps we can ask the system to plot temperature against age

H1 to AI Plot temperature against age

AI Done (changed axes)

H2 to H1 Now that looks interesting. Looks like a huge cluster.

H1 to AI Change the x-axis to a log scale

AI Done (changed axes)

H2 to H1 What are we looking at here? What is that outlier dot? You can ask the system
to tell us more about that star

H1 to AI Tell me more about this star

AI Sure (Shows a table with more details)

Feedback and Discussion. Two classes of problems emerged from the pilot
study. The first arose from failures or inaccuracies in head-orientation measure-
ments. The head-orientation system works based on facial landmarks which
assumes that the full face can be seen by the camera. Head-orientation mea-
surements failed when the system failed to detect a face, which occurred when
the user turned their head beyond the angle of recognition or covered a portion of
their face (e.g. while stroking their chin). It also failed when the user constantly
moved their head too quickly presumably in confusion trying to get the sys-
tems attention. Moreover, mis-calibration resulting from individual differences
in height or position sometimes caused inaccurate estimates of head orientation.

The second class of problem resulted from head orientation being an imper-
fect proxy for attention. We found that, while users looking at the display was a
good first-order heuristic for determining whether an utterance was addressed to
the system, there were several conditions under which intended commands were
ignored, including the user reading from a page, looked away from the system
trying to recollect a command or word, or looking at a human partner to seek
help with completing a command. Moreover, there were situations where the
system falsely interpreted an utterance as a command, such as when the user
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looked at a plot on the display while discussing it with their human partner
leading to a repeated and displeasing “Sorry, I can’t do that” response from the
agent.

A more positive finding was that users were willing to adapt their behav-
ior to accommodate deficiencies of the assistant; for example, when the system
committed transcription errors they began to enunciate commands more clearly.
Baba et al. (2012) have also found that their users spoke more slowly and loudly
when talking to the agent as compared to talking to their partner giving us a hint
that it can possibly be attributed to humans’ willingness to accommodate for
the agent. This prompted us to modify the UI to provide simple visual feedback
regarding the assistant’s mental model of the user’s attention. Our hypothesis
is that given enough feedback, users would be willing to slightly adapt their
behavior and that would lead to a more pleasant/usable experience. The next
sections focus on that.

4 Experiment 2

In this section, we first discuss how we translated lessons learned from the pilot
study of Sect. 3 into an enhanced prototype assistant. Then, we present the
results of a controlled user study of 8 novice users, none of whom had participated
in the pilot study, from which we establish with reasonable certainty that the
second prototype is more preferable than a comparable assistant that uses wake-
up words to determine whether it should respond to the user.

4.1 Technical Details

This section discusses the observations and our technical approach to incorpo-
rating them into an improved version of the agent.

Some calibration issues were addressed by placing the camera further away
from the participants i.e. mounted on the TV display itself. Others were alle-
viated by picking the whole TV display as a region of interest instead of the
logo of the AI avatar on it. This helped because a low computing cost headpose
tracking system is not designed to be as precise.

It was clear from the pilot study that the assistant needed to provide the user
with some sort of feedback; the question was what sort of feedback. Ruhland et
al. (2015) have summarized many benefits of multimodal output generation by
assistants. However, these generations need an animated humanoid avatars which
is not our case. Animated humanoid avatars are more expensive to build/run
which may be justified if the avatars want to exhibit any social intelligence
e.g. facial expressions which is not our focus. We want our agent to simplify
interactions with itself in group discussions. For our embodiment of AI agent,
we settled upon two approaches. First, we provided feedback on the assistant’s
understanding of the user’s head orientation. If the assistant believes the user is
looking in a direction other than the display, it uses an inward-pointing orange
arrow at the edge closest to the user’s inferred gaze to indicate the direction in
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Fig. 2. Screenshot of the display showing inward pointing arrows and colored tran-
scription (Color figure online)

which the user should move their gaze in order for the assistant to understand
that the user is paying attention to it (Fig. 2). If the assistant cannot tell where
the user is looking, it shows red dots in the center on all edges. When the assistant
believes the user is paying attention to it, it shows green dots in the center on all
four edges of the display analogous to a reciprocal gaze performed by the agent
thereby letting the user know that it is listening.

Xu et al. (2016) have shown how humans were more coordinated and syn-
chronized in their speech + gaze behavior when they successfully established
mutual gaze with a robot. We think that users in our interaction paradigm will
follow a similar pattern and the green dots (a proxy for system’s gaze) will
encourage the user to look at the system more while talking to it despite there
being a “situational attractor” (Katzenmaier 2004) such as a human partner or
the instruction sheet. We do not specifically aim to prove it in this paper, but
use it to base our assumption that the feedback from the system makes it easy
for the user to have a synchronized behaviour resulting in a usable system which
is the focus.

As a second feedback element, we displayed a color-coded text transcription,
such that utterances from which an actionable command was extracted while the
user was looking at the display were colored green, as seen in Fig. 2. White rep-
resented “no attention”, while red text represented “attention but no actionable
command”. This helped us eliminate unwelcome and long “Sorry I don’t under-
stand” response from the agent which takes seconds and substituted it with red
text that takes just a fraction of a second and conveys the same meaning.

The effectiveness of these feedback elements is discussed through a controlled
study described in the next section.
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4.2 Controlled Study

Demographic. A total of 8 university students participated in the study. All of
them were familiar with conversational chatbots and had interacted with them in
various degrees through their phones and home devices. They had a technology
background in the sense they were enrolled in STEM courses (mostly Computer
Science) and were in varied levels in their formal education. We mention this as
we see discussions on the effect of familiarity on the style and ease of interaction
by Sciuto et al. (2018) and, by extension, perhaps the know-how of their internal
working mechanism also affects it. We think that this would have minimal bias in
our study because of the uniformity in the subject pool. Specifically, all subjects
were at least slightly familiar with the concept of chatbots but not with a system
such as ours.

Experiment Design. Each subject was paired with a research assistant who
played the role of a conversation partner. A conference room style setting was
used with a large display on which a camera was mounted, as seen in Fig. 1b
The subjects were given a sheet listing the commands, and given an opportu-
nity to study it for a few minutes prior to their interaction with the assistant.
Once the interaction began, it consisted of interleaved conversation with the
research assistant (who would explain and/or suggest specific commands) and
the automated assistant, to whom the subject would issue commands.

Evaluating the quality of a conversational interface is a complicated task from
the conversation intelligence perspective. Radziwill and Benton (2017) have pro-
posed a good approach to evaluating chatbots, involving evaluation categories
that include performance, humanity, affect, understanding social cues, etc. How-
ever, our goal here was not to evaluate the conversation or capability of the
chatbot as a whole. Instead, we wanted to measure the usability of the headpose-
based assistant, tease out the factors that contribute most greatly to its usability,
and compare its usability to that of an otherwise identical assistant that requires
a wake-up word.

In order to do this, we created two variants of the exoplanets assistant that
were nearly identical, with the following exceptions:

1. Condition A. Users were required to use a wake-up word to signify that they
were addressing the assistant.

2. Condition B. Users merely needed to look at the display to signify that they
were addressing the assistant. The display included the visual feedback mech-
anisms (colored dots, live transcript and arrows) described in Sect. 4.1.

Each user interacted with both Condition A and Condition B. In order to reduce
any bias that might result from the order in which they were exposed to these
variants, half of the population were shown Condition A first while the other
half were shown Condition B first. Following the interaction with each variant,
we asked users questions from Table 2 and followed up with an interview.

Before the interaction began, the users were introduced to the system and
were instructed about how they could interact with it. The interaction itself was
moderated, such that the research assistant would help the users understand
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exoplanets by working their way through the commands in the sheet and under-
standing the output. The subjects were encouraged to think out loud. A typical
dialogue looked similar to the hypothetical dialogue in Table 1.

Results and Discussion. In this section, we detail our findings from the exper-
iment on the second prototype assistant and evaluate its usability and likability
relative to that of an assistant that is identical in every aspect except that it
uses a wake-up word.

Subjects typically spent about 20–30 min in the room, including time spent
on logistics and explanations. All users combined, we recorded 67.53 min of total
interaction with 31.27 min of Condition A (avg 3.9 ± 1.3 min) and 36.26 min
of Condition B (avg. 4.53 ± 1.1 min). The time spent was a decision of the
participant and research assistant, based on the number of types of commands
issued and whether the participants felt they were ready to evaluate the system or
not. This statistic is noted to give the readers an idea of how long a conversation
lasted and does not imply likability or usability; these issues are discussed in
later sections.

Table 2 lists seven questions that were addressed to the subjects. Q1 was
addressed to the subjects after they had experienced both conditions. The other

Table 2. Questions posed to users

Question
number

Question Answer format

Q1 Do you like to interact
with the headpose more or
without? (or similar)

Semi-structured interview

Q2 How would you rate your
overall experience?

Likert Scale of Very Unusable - Very Usable

Q3 How easy was it to get
[the bot] to know you are
asking her to do
something?

Likert Scale of Very Difficult - Very Easy

Q4 How attentive was [the
bot] to you?

Likert Scale of Very Unattentive - Very
Attentive

Q5 How helpful was it to see
the transcription of what
you were saying to the AI
Agent?

Likert Scale of Very Unhelpful - Very Helpful

Q6 (Only
Condition B)

How helpful was the green
dot in giving you feedback
about AI Agent’s
attentiveness?

Likert Scale of Very Unhelpful - Very Helpful

Q7 (Only
Condition B)

How helpful were the
arrows in knowing where
to look to get AI Agent’s
attention?

Likert Scale of Very Unusable - Very Usable
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questions were addressed to subjects after they experienced each variant (ques-
tions Q6 and Q7 pertained to Condition B only). The third column of the table
describes how answers were elicited. For those questions whose answers were
numbers on a Likert scale, the possible answers were integers ranging from 1
(least favorable) to 5 (most favorable). The remainder of this subsection presents
a comparative analysis of the usability and likability of the interaction under
Conditions A and B, based upon an analysis of the answers to the questions in
Table 2.

Likability. To assess likability, we explored question Q1 by conducting a semi-
structured interview with the subjects right after they had experienced both
conditions and given written feedback. We categorized their answers into “Head-
pose” and “Wake Word” systems when their opinion strongly swayed in one or
the other direction using thematic analysis of the comments. As is evident from
Fig. 3a most users preferred the headpose-based system to the one requiring the
wake-up word. We ran a Fisher’s exact test on the preference indicated by the
users towards the wake-up word based vs. headpose based systems. We chose
this test because it is applicable in situations with small sample sizes, for the
purpose of examining the significance of association between two kinds of clas-
sification. We used a 2 × 2 matrix with rows (Headpose based system, wakeup
word based system) and columns (preferred, not preferred). Our findings that
the head pose system is preferred were significant at p < 0.1 (p = 0.08).

Subjects who indicated that they would like a system that understood a
combination of both wakeword and headpose based attentions expressed that
there might be a case where they would not be able to directly look at the agent
and would rather address it verbally. They were excluded from the test as their
opinion did not strongly favor one or the other. It is worth mentioning that the
Condition B version was able to do so and the users were not stopped from using
the wakeword in their Condition B interactions. The subjects who indicated that
they liked the wakeword system expressed concerns such as what would happen
if the agent accidentally thought it needed to take action and how it would be
more unwelcome than not taking any action as, the equivalent of “undo” does
not typically exist in chatbots.

(a) Q1 - User Preferences (b) Q2 - Usability of the System

Fig. 3. Preference and usability
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Usability and Perceived Discernment. Question Q2 was aimed at assessing
usability. Figure 3b shows the histogram of scores from the users on a Likert scale
of Very Unusable (1) to Very Usable (5). We see that the new (Condition B)
system is usable, which is our goal. On average, Condition B has better usability
scores than Condition A: 4.25 ± 0.71 (Condition B) vs. 3.75 ± 0.89 (Condition
A). However, applying a Wilcoxon-Mann-Whitney test to these results yields a
p-value of 0.15, which is not quite enough to claim that the apparent usability
advantages of the head-pose system are statistically significant.

To assess the assistant’s perceived discernment—that is, the extent to which
users perceived that the assistant correctly understood when it was and was
not being addressed, and its attentiveness—we asked Questions Q3 and Q4 (see
Table 2 for definitions and Likert scales). Likert scores for Conditions A and
B were comparable in both cases: “somewhat easy” for Q3 (3.75 ± 1.04 for
Condition B vs. 3.6± 0.74 for Condition A) and “attentive” for Q4 (4.25± 0.89
for Condition B vs. 4.13 ± 0.83 for Condition A). In other words, the perceived
discernment of the two variants was essentially the same, and adequate.

Usability and Likability Factors. Here we analyze a variety of factors that
contributed to the usability and likability of the headpose-based system.

Color-coded Transcript. For traditional HCI, users see feedback on their
own input i.e. through text appearing as they type or the cursor responding
as they move their mouse. Such feedback can also convey that the system is not
frozen. However, standard feedback mechanisms do not exist for current voice-
based systems. We believe that, for voice-based assistants in general, showing
color-coded transcription would help users understand what the agent thought
it heard (if anything), and thereby constitute a useful form of feedback. Figure 4,
which summarizes the responses to Q5, supports such a belief in our case: the
helpfulness score is 4.5 ± 0.53 for Condition B vs. 4.38 ± 0.74 for Condition A.

Fig. 4. Q5 - Helpfulness of displayed transcript

We note that displaying transcription has been shown to be helpful in the
context of foreign language learning based upon conversation with AI agents
(Divekar et al. 2018). However, their transcripts were not color-coded. To elicit
whether the color-coded nature of the transcript was helpful, we asked another
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question—“Did you know when your utterance was recognized as a command
vs. when it was not? How?”. Using thematic analysis of responses, 6 of 7 (all
except for one case of illegible data) could be strongly attributed to the color-
coded nature of the transcript. Thus, we see that the color-coded nature of the
transcript was noticed and the meaning it carried was well understood.

Visual Attention Feedback. In the Pilot Study section (Sect. 3.2), we theo-
rized that it would be beneficial to provide visual feedback of the agent’s under-
standing of the user’s attentional state, and as described in Sect. 4.1 we added
green dots and arrows for this purpose. In order to assess the helpfulness of these
two feedback mechanisms, we asked the users Q6 and Q7 after they experienced
Condition B. Figure 5 shows plots of the user’s ratings on question Q6 and Q7
of helpfulness on a Likert scale of 1–5. As seen, the users found the green dot
Very Helpful (avg. 4.63 ± 0.52) and the arrows Helpful (avg. 3.88 ± 0.99).

(a) Q6 - Helpfulness of green dot (b) Q7 - Helpfulness of arrows

Fig. 5. Helpfulness of visual feedback of attention

ROI Selection. We chose headpose estimation as a cheaper, more easily deploy-
able, and less intrusive alternative to eye gaze estimation, but of course there
is a cost: it is inherently less precise. Since we were unable to reliably detect
whether users were looking at the avatar or not, we chose the entire display as
the Region of Interest (ROI). Anecdotally, we noticed that users coordinated
their speech and gaze, and waited for the green dot when they wanted to issue
commands to the system. There were some instances when the agent mistook
a human-human conversation as a command and interrupted out of turn. For
example, there are several graphs and other objects of interest on the display that
the user might sometimes want to look at while talking to their human partner.
Such instances were rare and didn’t seem to affect the usability/likability. We
anticipate that advances in headpose recognition systems will result in improved
accuracy, enabling the ROI to be reduced in area, which may further improve
the likability of headposed-based assistants beyond what we have measured here.

Natural, Learnable Interaction. To gauge where people looked while giving
commands, we manually annotated videos of 7 users1 under Condition A, as
1 Video data were missing for one subject.
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this was the more natural case in which the user’s head pose has no impact on
the system’s behavior. Annotations included the times at which each utterance
started and ended and the times during which the subject was looking at the
display. We found that users looked at the assistant’s embodiment (the display)
anyway, suggesting that this is indeed a natural interaction paradigm.

To help quantify this phenomenon, the overlap between their speech com-
mand and the time during which their headpose intersected with the display is
shown in Fig. 6. Table 3 shows the percentage overlap between the users’ speech
and their head gaze oriented towards the display, in time, when intended to issue
commands to the agent. Column 1 (Overall) shows the average percent intersec-
tion of all users. Column 2 and Column 3 show the average percent intersection of
users who were exposed to Condition A first and Condition B first, respectively.
Column 3 and Column 4 show the average percent overlap for long commands
and short commands. Long commands are those which took more than 4 sec-
onds to finish. This would happen in cases e.g. when the user would forget the
command midway and would have to consult the command list for help. We
observed that the overlap percent was significantly greater for short commands
than it was for long commands, suggesting that utterance length might be a
useful factor to include in follow-up experiments.

Fig. 6. Percentage overlap across users in Condition A

Table 3. Percentage of overlap between speech and head gaze (Condition A)

Overall Condition A first Condition B first Long commands Short commands

Avg 70.06± 36.2 53.22± 38.47 76.96± 33.3 34.63± 37.16 78.57± 30.69

N 62 18 44 12 50

Comparing columns 2 and 3 of Table 3, it is apparent that subjects who
were exposed to Condition B first (headpose based attention system) have a
larger overlap percentage under Condition A (wake-up word system) than those
who are first exposed to Condition A. To ascertain whether this observation
was statistically significant, we applied a Wilcoxon Rank-Sum Test (which is
applicable for non-normal distributions) to the data that underlie columns 2
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and 3 of Table 3, finding that the overlap difference was significant with a p-
value of 0.02 (thus significant at p < 0.05). The fact that users who first used
the head pose system continued to exhibit a behavior that no longer had any
impact may suggest that the behavior is readily learned, and so natural as to be
almost subconscious.

5 Conclusions and Future Work

In this work, we have demonstrated that one can build a practical embodied
agent that is capable of operating in environments where multiple humans are
conversing with one another and interacting with the agent in an interleaved
fashion. The agent is practical in the sense that (a) it does an adequate job of
discerning when it is being addressed without imposing on the user the burden
of using a wake-up word, and (b) it is relatively inexpensive to implement—
requiring only a simple camera and headpose estimation software.

A key finding from a first informal pilot study was that head pose estimation
did not work adequately by itself, but there were hints that users might adapt to
some form of feedback indicating when the agent believed the user was looking
at the system. Inspired by this finding, we enhanced the agent by providing
such feedback in the form of dots and arrows, and ran a second experiment that
allowed us to quantify its likability and usability relative to that of an alternate
variant of the agent that required a wake-up word. We found that users adapted
very readily (perhaps even subconsciously) to this form of feedback, thereby
amplifying what would otherwise be a weaker signal. Analysis of user responses
showed that the enhanced agent was both likeable and usable, and that its
likability was greater than that of the wake-up word agent to a statistically
significant degree. (There were indications that the usability was also greater for
the headpose-based agent, but not quite at a statistically significant level).

Based upon these initial implementations and studies, we feel encouraged
that head orientation can be used as a simple, low-cost basis for more natural
interactions with cognitive assistants that engage in extended multi-modal dia-
logues with multiple people. We see multiple avenues for future efforts. In addi-
tion to pursuing improvements in the cost and accuracy of headpose estimation,
it would be worthwhile to couple headpose estimation with other non-verbal
clues regarding the addressee. We have identified the length of an utterance as
one such factor; the Related Work section of this paper contains numerous other
factors that prior authors have identified as being correlated with attention and
are therefore good candidates for future study. An important question to be
resolved is the tradeoff between the incremental accuracy (and concomitant lik-
ability and usability) provided by these additional factors versus their additional
cost. Opening up the interaction to multiple agents who are aware of their human
partners as well as the other agents is another exciting direction to pursue (for
example, an early prototype of two shopkeeper agents negotiating with humans
is reported by Divekar et al. 2019).
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